Skip to content

Bibliography Of The Earthquake On May 28th

Also on this day

Lead Story

1881

American Red Cross founded

In Washington, D.C., humanitarians Clara Barton and Adolphus Solomons found the American National Red Cross, an organization established to provide humanitarian aid to victims of wars and natural disasters in congruence with the International Red Cross. Barton, born in Massachusetts in 1821, worked with the sick and wounded during the American...

American Revolution

1758

Lenape Indians abduct Mary Campbell from western Pennsylvania

On this day in 1758, 10-year-old Mary Campbell is abducted from her home in Cumberland County, Pennsylvania, by Lenape Indians; she becomes an icon of the French and Indian War and backcountry experience. After her abduction, Campbell lived among the family of Chief Netawatwees in the Ohio Valley. In October...

Automotive

1901

Connecticut enacts first speed-limit law

On this day in 1901, Connecticut becomes the first state to pass a law regulating motor vehicles, limiting their speed to 12 mph in cities and 15 mph on country roads. Speed limits had been set earlier in the United States for non-motorized vehicles: In 1652, the colony of New...

Civil War

1863

The Siege of Port Hudson begins

Nathaniel Banks, commander of the Union Department of the Gulf, surrounds the Confederate stronghold at Port Hudson, Louisiana, and attacks. Fortifications were built at Port Hudson in 1863 to protect New Orleans from a Union attack down the Mississippi River. On April 25, 1862, New Orleans had fallen into Union...

Cold War

1988

Gorbachev consolidates power

In an attempt to consolidate his own power and ease political and ethnic tensions in the Soviet republics of Armenia and Azerbaijan, Russian leader Mikhail Gorbachev dismisses the Communist Party leaders in those two republics. Since coming to power in 1985, Gorbachev had faced numerous problems with his efforts to bring...

Crime

1924

Leopold and Loeb gain national attention

Fourteen-year-old Bobbie Franks is abducted from a Chicago, Illinois, street and killed in what later proves to be one of the most fascinating murders in American history. The killers, Nathan Leopold and Richard Loeb, were extremely wealthy and intelligent teenagers whose sole motive for killing Franks was the desire to...

1992

Long Island Lolita is arrested

Amy Fisher, the so-called “Long Island Lolita,” is arrested for shooting Mary Jo Buttafuoco on the front porch of her Massapequa, New York, home. Fisher, only 17 at the time of the shooting, was having an affair with 38-year-old Joey Buttafuoco, Mary Jo’s husband. The tawdry story soon became a...

1996

A veteran’s flashback defense doesn’t hold up in court

Seventy-six-year-old Richard Keech shoots his son-in-law, Nicholas Candy, to death outside his Long Beach, California, home. Candy, in the midst of a divorce and custody battle with Keech’s daughter Nancy, had arrived to pick up his son. As he staggered away down the street yelling, “Help me, help me,” Keech...

General Interest

1542

De Soto dies in the American wilderness

On the banks of the Mississippi River in present-day Louisiana, Spanish conquistador Hernando de Soto dies, ending a three-year journey for gold that took him halfway across what is now the United States. In order that Indians would not learn of his death, and thus disprove de Soto’s claims of...

1927

Lindbergh lands in Paris

American pilot Charles A. Lindbergh lands at Le Bourget Field in Paris, successfully completing the first solo, nonstop transatlantic flight and the first ever nonstop flight between New York to Paris. His single-engine monoplane, The Spirit of St. Louis, had lifted off from Roosevelt Field in New York 33 1/2...

1932

Earhart completes transatlantic flight

Five years to the day that American aviator Charles Lindbergh became the first pilot to accomplish a solo, nonstop flight across the Atlantic Ocean, female aviator Amelia Earhart becomes the first pilot to repeat the feat, landing her plane in Ireland after flying across the North Atlantic. Earhart traveled over...

Hollywood

1999

Soap star Susan Lucci wins first Emmy after 19 nominations

“The streak is over…Susan Lucci!” announces Shemar Moore of The Young and the Restless on this night in 1999, right before presenting the Daytime Emmy Award for Best Actress to the tearful star of ABC’s All My Children. The award was Lucci’s first win in 19 straight years of being...

Literary

1910

Serialization of Colette’s The Vagabond begins

French author Colette (born Sidonie-Gabrielle Colette) begins to publish her novel The Vagabond in serial form. Colette had already achieved success as a writer with her racy and popular series of novels about a young girl named Claudine, starting with Claudine at School (1900). However, she published these works under the...

Music

1955

Chuck Berry records “Maybellene”

John Lennon once famously said that “if you tried to give rock and roll another name, you might call it ‘Chuck Berry.'” That’s how foundational Berry’s contributions were to the music that changed America and the world beginning in the mid-1950s. Even more than Elvis Presley, who was an incomparable...

Old West

1539

Black Spanish explorer Estevan is reported killed

Word reaches Fray Marcos that Indians have killed his guide Estevan, a black slave who was the first non-Indian to visit the pueblo lands of the American Southwest. Thought to have been born sometime around 1500 on the west coast of Morocco, Estevan was sold to the Spanish as a slave....

Presidential

2000

Garfield’s spine on display at museum

On this day in 2000, the bones of President James Garfield’s spine are on display for a final day as part of the Out of the Blue Closets exhibit at the National Museum of Health and Medicine in Washington, D.C. The exhibit featured medical oddities from the museum’s archives. The...

Sports

1978

Nancy Lopez wins her first Coca-Cola Classic

On May 21, 1978, 21-year-old rookie golfer Nancy Lopez defeats her childhood hero, JoAnne Carner, on the first hole of a sudden death playoff to win the Coca-Cola-Classic in Jamesburg, New Jersey. The next year Lopez beat out 44-year-old Mickey Wright, again in a playoff, to repeat as Coca-Cola champion....

Vietnam War

1969

Military spokesman defends “Hamburger Hill”

A U.S. military command spokesman in Saigon defends the battle for Ap Bia Mountain as having been necessary to stop enemy infiltration and protect the city of Hue. The spokesman stated that the battle was an integral part of the policy of “maximum pressure” that U.S. forces had been pursuing...

World War I

1911

Second Moroccan Crisis

Six years after the First Moroccan Crisis, during which Kaiser Wilhelm’s sensational appearance in Morocco provoked international outrage and led to a strengthening of the bonds between Britain and France against Germany, French troops occupy the Moroccan city of Fez on May 21, 1911, sparking German wrath and a second...

World War II

1940

Nazis kill “unfit” people in East Prussia

On this day in 1940, a “special unit” carries out its mission-and murders more than 1,500 hospital patients in East Prussia. Mentally ill patients from throughout East Prussia had been transferred to the district of Soldau, also in East Prussia. A special military unit, basically a hit squad, carried out its...

1942

Thousands of Jews die in Nazi gas chambers; IG Farber sets up factory

On this day in 1942, 4,300 Jews are deported from the Polish town of Chelm to the Nazi extermination camp at Sobibor, where all are gassed to death. On the same day, the German firm IG Farben sets up a factory just outside Auschwitz, in order to take advantage of...

The 2006 Yogyakarta earthquake (also known as the Bantul earthquake) occurred at 05:54 local time on 27 May with a moment magnitude of 6.4 and a maximum MSK intensity of VIII (Damaging). Several factors led to a disproportionate amount of damage and number of casualties for the size of the shock, with more than 5,700 dead, tens of thousands injured, and financial losses of Rp 29.1 trillion ($3.1 billion). With limited effects to public infrastructure and lifelines, housing and private businesses bore the majority of damage (the 9th-century Prambanan Hindu temple compound was also affected), and the United States' National Geophysical Data Center classified the total damage from the event as extreme.

Although Indonesia experiences very large, great, and giant thrust earthquakes offshore at the Sunda Trench, this was a large strike-slip event that occurred on the southern coast of Java near the city of Yogyakarta. Mount Merapi lies nearby, and during its many previous historical eruptions, large volume lahars and volcanic debris flowed down its slopes where settlements were later built. This unconsolidated material from the stratovolcano amplified the intensity of the shaking and created the conditions for soil liquefaction to occur. Inadequate construction techniques and poor quality materials contributed to major failures with unreinforced masonry buildings, the most prevalent type of home construction, though other styles fared better.

Tectonic setting[edit]

See also: Geology of Indonesia, Geology of the Sumatra Trench, List of volcanoes in Indonesia, and Sunda Arc

The islands of Indonesia constitute an island arc that is one of the world's most seismically active regions, with high velocity plate movement at the Sunda Trench (up to 60 mm (2.4 in) per year), and considerable threats from earthquakes, volcanic eruptions, and tsunami throughout. Java, one of the five largest in the Indonesian archipelago, lies on the Sunda Shelf to the north of the Sunda Trench, which is a convergent plate boundary where the Indo-Australian Plate is being subducted under the Eurasian Plate. The subduction zone offshore Java is characterized by a northward dipping Benioff zone, frequent earthquakes and volcanic activity that influence the regional geography, and direct or indirect stress transfer that has affected the various onshore faults. Sedimentation is closely related to tectonics, and while the volume of offshore sediment at the trench decreases with distance from the Ganges-Brahmaputra Delta at the Bay of Bengal, the onshore accrual of sediments near the Special Region of Yogyakarta has been shaped by tectonic events.[6]

Earthquake[edit]

See also: Strike-slip tectonics

According to the United States Geological Survey (USGS), the shock occurred 20 km (12 mi) south-southeast of Yogyakarta at a depth of 10 km (6.2 mi), but other institutions provided source parameters (location and depth) that were not in agreement. No information was present on the extent of the faulting or the direction of propagation and there was no link to the eruption of Mount Merapi. The USGS suggested that the focal mechanism was most likely associated with left-lateral slip on a NE trending strike-slip fault, as that is the orientation of the Opak Fault, but this has not been validated. No surface breaks were documented, but the location of the greatest damage that was caused does align with the Opak Fault as a possible source.[7]

A group of Japanese and Indonesian scientists visited the area in March 2007 and confirmed the lack of surface ruptures, and pointed out that any visible expression of the fault would likely have been rapidly destroyed due to the tropical climate, and have acknowledged the widely varying locations (and the preference for the Opak Fault) that were reported by the various seismological institutions. Their investigation resulted in a different scenario, with an unknown or newly formed NE trending fault as the origin of the shock. Evidence for one of the proposed faults was found in the form of alignment of portions of the Oyo River near the USGS' epicenter, which is parallel (N°65E) to the Nglipar fault in the southern mountains region. If the shock occurred in this area it could indicate the reactivation of a major fault system. The second proposed fault further to the east is nearly parallel to the Nfalang and Kembang faults that lie to the north of the Oyo River.[8]

InSAR analysis[edit]

Further information: Remote sensing

While the densely populated area that saw significant destruction is adjacent to the Opak River Fault, both the USGS and Harvard University placed the epicenter to the east of that fault. Few seismometers were operating in the region, but a group of temporary units that were set up following the mainshock recorded a number of aftershocks that were east of the Opak River Fault and were aligned along a 20 km (12 mi) zone striking N°50E. Due to the ambiguous nature of the available information on the source of the Yogyakarta earthquake, a separate group of Japanese and Indonesian scientists applied one of the first uses of interferometric synthetic aperture radar to determine the source fault. Several data sets (one captured in April 2006 and another post-earthquake batch from June) were collected from an instrument on board the Advanced Land Observation Satellite and were compared to each other to show potential ground deformation patterns.[9]

A lack of any dislocation found on the images along the Opak River fault made evident the lack of movement along that fault, and though the aftershocks were occurring at a depth of 8–15 km (5.0–9.3 mi), the deformation was distinct at the surface. The observed ground deformation that was detailed by the differential satellite images and Global Positioning System measurements was roughly 10 km (6.2 mi) east of (and parallel to) the Opak River Fault, along a zone that passed through the USGS' epicenter, and delineated a NE trending vertical fault (a dip of 89°). The displacements were not more than 10 cm (3.9 in) and indicated left-lateral strike-slip motion as well as a component of reverse slip, and to the west of the Opak River Fault (and closer to the areas of damage) strong ground motion triggered subsidence of volcanic deposits from Mount Merapi.[9]

Strong motion[edit]

In 2006, Mount Merapi had not been active for more than four years, but on May 11 a pyroclastic flow triggered the evacuation of more than 20,000 people from the northern sector of Yogyakarta. While authorities expected a larger eruption to follow, the earthquake occurred instead. The volcano's previous eruptions deposited loosely bound sedimentary material in the valley during lahar flows and this material was found to have played a significant role in the effects of the shock. For example, German and Indonesian scientists set up instruments at several locations situated on different soil types to measure aftershocks. Of nine events that were analyzed, it was found that the station at Imogiri (a heavily affected village that was built on 150–200 meters (490–660 ft) of sediment) showed signs of local amplification when compared to a location that was built on bedrock, and that the deposits amplified the impact of the shallow crustal rupture.[10]

Liquefaction[edit]

See also: Kewu Plain

A separate post-event study looked at the relationship with the layer of sediment and the occurrence of soil liquefaction during earthquakes near Bantul. Researchers stated that the Yogyakarta region is seismically active, with four known events in the 19th century and three in the 20th century, with peak ground acceleration values of 0.038–0.531g. The type and properties of sediment control the occurrence and distribution of liquefaction, and other environmental conditions (like the water table) also play a part, as well as the peak ground acceleration of the earthquake. The Bantul-Klaten plain consists of alluvium (sand, silt, clay, and gravel) and volcanic deposits from Merapi (sand, agglomerates, tuff, and ash), as well as limestone and sandstone. Borehole and magnetic data surveys show that the alluvium and lahar deposits at the Bantul graben are 20–200 meters (66–656 ft) thick and at places over 200 meters, and the water table is .6–5 meters (2 ft 0 in–16 ft 5 in) below ground level. Most liquefaction events took place near the 2.5 km (1.6 mi) wide Opak Fault zone. Sand boils, lateral spreading, settling, and slides led to some tilting and collapse of buildings.[11]

Damage[edit]

See also: List of regencies and cities of Indonesia

Altogether, eleven densely populated districts comprising 8.3 million people were affected, but the regencies of Bantul, Sleman, Gunung Kidul, Kulon Progo, Klaten, and the city of Yogyakarta were especially hard hit. More than 5,700 people were killed in the early morning shock, with tens of thousands injured, and hundreds of thousands made homeless. Total financial losses from the event are estimated to be Rp 29.1 Trillion ($3.1B), with 90% of the damage affecting the private sector (homes and private businesses) and only 10% affecting the public sector. The damage to housing accounted for about half of the total losses and a comparison was made to the damage to homes in Aceh following the 2004 Indian Ocean earthquake and tsunami. Damage in central Java was more pronounced because of the substandard construction practices and the high population density, but on the other end of the scale, damage to infrastructure was very limited.[12]

Housing[edit]

With 154,000 houses destroyed and 260,000 units experiencing damage, the event was one of the most costly natural disasters in the previous ten years. With 7% of housing units lost, more houses were damaged than during the 2004 Sumatra–Andaman and the 2005 Nias–Simuele events combined. With 66,000 homes destroyed, the Klaten District saw the heaviest damage, followed by Bantul, with 47,000 destroyed. In the most heavily damaged areas, 70–90% of units destroyed, contributing to a total of 4.1 million cubic meters of debris. Of the three home construction styles used in the area, the most common type fared badly. Low quality materials and improper construction styles led to unreinforced masonry buildings being responsible for the large loss of life and the high number of injuries. The Earthquake Engineering Research Institute stated that there was a "lack of wall integrity in the transverse direction for out-of-plane forces" and "no mechanical connection between the top of the wall and the roof or floor, and inadequate out-of-plane strength due to a lack of reinforcement".[13]

Prambanan[edit]

See also: List of Hindu temples in Indonesia and List of World Heritage Sites in Indonesia

The Prambanan Temple Compounds (also known as the Roro Jonggrang Temple) was constructed near the border of Yogyakarta and Central Java in 856, and was abandoned shortly thereafter. The site, which has experienced about 16 earthquakes since the 9th-century (including the 2006 event), consists of three yards of varying sizes with different stone block temples, and was rediscovered by a Dutch explorer in 1733. The smallest yard (110 m2) houses the main temple, and a slightly larger yard (220 m2) houses the Perwara temple. The main Prambanan Temple Complex is housed in the largest yard (390 m2). Many stones were dislodged and some parts broke off during the earthquake, and civil engineers were brought in to investigate the characteristics of the soil under the temple using ground penetrating radar, bore samples, and standard penetration tests. The goal was to visually examine the soil layers, to determine soil bearing capacity and depth of groundwater, as well as the depth of bedrock. Recommendations were then made regarding the renovations and repair process.[14]

International aid[edit]

Many countries and organizations offered foreign aid to the devastated region, but the actual amounts delivered/received often varied from these figures, as in the case of other disasters.

  • Japan promised US$10 million, sent two medical teams and also announced that it will send troops to help out[15]
  • The United Kingdom offered four million pounds (US$7,436,800)[15]
  • Saudi Arabia promised US$5 million, plus food, medical equipment and tents, while the United Arab Emirates and Kuwait each pledged US$4 million[15]
  • The European Union offered three million euros (US$3,800,000)[16]
  • The United States offered $5 million; US military joins relief effort[17]
  • Australia offered 7.5 million Australian dollars (US$5,675,000) in aid relief, including 27 member medical team among over 80 personnel[18]
  • China offered $2 million U.S dollars[19]
  • Canada offered two million Canadian dollars (US$1.8 million)[20]
  • India put forward an aid package worth $2 million.[21]
  • The Church of Jesus Christ of Latter-day Saints (Mormons) donated US$1.6 million worth of emergency supplies to devastated areas, teaming up with Islamic Relief Worldwide who provided the transportation. In addition, local Indonesian LDS members prepared thousands of meals, hygiene kits, cots, mattresses, and blankets for those requiring medical attention.[22]
  • The Netherlands promised 1 million euros in May plus an extra 10 million euros one month later, Belgium has pledged $832,000, while Norway, France and Italy have offered either medical teams or relief supplies[15]
  • The Red Cross, Red Crescent, OXFAM, Plan International, Jesuit Refugee Service alongside other NGOs and UN agencies, including WFP and UNICEF, provided plastic sheeting, tools and building materials, and cash assistance to the victims.[16] Japan and Malaysia are to send medical teams to the affected region[23]
  • Singapore offered humanitarian relief assistance in the form of a 35-member Armed Forces Medical Team, a 43-member Civil Defense Force Disaster Assistance and Rescue Team, as well as US$50,000 worth of emergency supplies[24]
  • The United NationsWorld Health Organization sent medicines and communications equipment, enough emergency health kits to last 50,000 people three months, and surgical kits for as many as 600 operations[25]
  • Vietnam offered 1,000 tons of rice to Indonesia.[26]
  • King Abdullah II of Jordan ordered to dispatch a plane laden with humanitarian relief to alleviate the suffering of Indonesian earthquake victims that hit Java. The aid included blankets, medicines and other medical equipment.[28]
  • MERCY Malaysia[29] sent 6 Missions to Yogya the first being sent on 28 May 2006. Datuk Dr. Jemilah Mahmood, President of MERCY Malaysia (Mission Leader) and Saiful Nazri, Programme Officer from MERCY Aceh Office went there on the first mission travelling by a special United Nations Humanitarian Air Services (UNHAS) flight from Banda Aceh along with other international organisations based in Aceh and two (2) tonnes of medical supplies contributed by the international agencies from Aceh. The first team had secured ground logistics for the subsequent teams coming in from Kuala Lumpur.

Reconstruction[edit]

The earthquake's shallow depth was a major factor, but the scale of the damage was made worse by failure to meet safe building standards and employ basic earthquake-resistant construction methods, according to FuturArc.[30] Most homes in the area were built with low-quality materials without structural frames and reinforcing pillars. Many deaths and injuries occurred when buildings and walls collapsed.

The government was slow to implement assistance in reconstructing private houses, leading many homeowners to repair or rebuild their homes either by themselves or with community help. Reconstruction in some areas was aided by relief agencies, like the Red Cross Red Crescent.

Villagers rebuilt their homes with extremely limited resources, using simple affordable materials. They turned to traditional materials, such as bamboo, because of the damage inflicted by collapsing brick walls.

See also[edit]

References[edit]

  1. ^ abcdISC (2015), ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009), Version 2.0, International Seismological Centre 
  2. ^National Geophysical Data Center / World Data Service (NGDC/WDS), Significant Earthquake Database, National Geophysical Data Center, NOAA, doi:10.7289/V5TD9V7K 
  3. ^Murakami, H.; Pramitasari, D.; Ohno, R. (2008). Human casualty and damage distribution in relation to seismic intensity in the 2006 Central Java earthquake in Indonesia(PDF). The 14th World Conference on Earthquake Engineering, October 12–17, 2008, Beijing, China. 
  4. ^Elnashai et al. 2006, p. 18
  5. ^Marso, J.; Anderson, R.; Frost, E. (2008), "A short note on the tectonic setting and regional geology of the area affected by the May 27, 2006, Yogyakarta earthquake and its usefulness in assessing seismic hazard", The Yogyakarta earthquake of May 27, 2006, Star Publishing Company, Inc., pp. 1.1–1.3, ISBN 978-0-89863-304-7 
  6. ^Elnashai et al. 2006, pp. 9, 15
  7. ^Setijadji, L. D.; Barianto, D. H.; Watanabe, K.; Fukuoka, K.; Ehara, S.; Rahardjo, W.; Sudarno, I.; Shimoyama, S.; Susilo, S.; Itaya, T. (2008), "Searching for the active fault of the Yogyakarta earthquake of 2006 using data integration on aftershocks, cenozoic geo-history, and tectonic geomorphology", The Yogyakarta earthquake of May 27, 2006, Star Publishing Company, Inc., pp. 4.1–4.4, 4.17, 4.18, ISBN 978-0-89863-304-7 
  8. ^ abTsuji, T.; Yamamoto, K.; Matsuoka, T.; Yamada, Y.; Onishi, K.; Bahar, A.; Meilano, I.; Abidin, H. Z. (2009), "Earthquake fault of the 26 May Yogyakarta earthquake observed by SAR interferometry"(PDF), Earth, Planets and Space, Terra Scientific Publishing Company, 61: e29–e32 
  9. ^Walter, T. R.; Wang, R.; Luehr, B.-G.; Wassermann, J.; Behr, Y.; Parolai, S.; Anggraini, A.; Günther, E.; Sobiesiak, M.; Grosser, H.; Wetzel, H.-U.; Milkereit, C.; Sri Brotopuspito, P. J. K.; Harjadi, P.; Zschau, J. (2008), "The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster?", Geochemistry, Geophysics, Geosystems, Wiley, 9 (5): 2, 5, 6, Bibcode:2008GGG.....9.5006W, doi:10.1029/2007GC001810 
  10. ^Sarah, D.; Soebowo, E. (2013), "Liquefaction Due to the 2006 Yogyakarta Earthquake: Field Occurrence and Geotechnical Analysis", Procedia Earth and Planetary Sciences, International Symposium on Earth Science and Technology, CINEST 2012, Elsevier, 6: 383–388, doi:10.1016/j.proeps.2013.01.050 
  11. ^CGI 2006, pp. 3, 7, 12, 13, 15
  12. ^EERI (2006), The Mw 6.3 Java, Indonesia, Earthquake of May 27, 2006(PDF), EERI Special Earthquake Report, Earthquake Engineering Research Institute, pp. 1, 3, 4 
  13. ^Suryolelono, K. B. (2008), "Investigation of the Prambanan temple after the May 27, 2006 Yogyakarta earthquake", The Yogyakarta earthquake of May 27, 2006, Star Publishing Company, Inc., pp. 16.1–16.9, ISBN 978-0-89863-304-7 
  14. ^ abcd"Aid pledges for Java victims rise". BBC News. 2006-05-29. Retrieved 2006-05-29. 
  15. ^ ab"Aid offers pour in for Java quake". BBC News. 2006-05-28. Retrieved 2006-05-28. 
  16. ^"U.S. Military Joins Indonesia Quake Relief". CBS News. 2006-05-31. Archived from the original on June 14, 2006. Retrieved 2006-05-31. 
  17. ^"Australia send 80 skilled personnel to Yogyakarta". Antara. 2006-05-31. Retrieved 2006-05-31. 
  18. ^"China to offer 2 mln dollars aid to quake-hit Indonesia". People's Daily Online. 2006-05-28. Retrieved 2006-05-28. 
  19. ^"Ottawa pledges $2M to Indonesia quake victims; no Canadians reported affected". Maclean's. 2006-05-27. Archived from the original on June 14, 2006. Retrieved 2006-05-28. 
  20. ^"India steps up aid to Indonesia". The Hindu. 2006-05-29. Retrieved 2006-05-30. 
  21. ^"Mormons Donate for Indonesia Earthquake Relief". The Church of Jesus Christ of Latter-day Saints Newsroom. 2006-05-31. Retrieved 2006-05-31. 
  22. ^"All our students in Yogyakarta safe". The Star, Malaysia. 2006-05-28. Retrieved 2006-05-28. 
  23. ^"Singapore's aid teams arrive in quake-hit Java". Channel NewsAsia. 2006-05-28. Retrieved 2006-05-28. 
  24. ^"UN health agency rushes aid to quake-struck parts of Indonesia". UN News Centre. 2006-05-29. Retrieved 2006-05-30. 
  25. ^"Vietnam sends rice aid to Java quake victims". VietNamNet Bridge. 2006-05-31. Archived from the original on 2006-06-13. Retrieved 2006-05-31. 
  26. ^"Island aid for Indonesia". Manx Radio. 2006-05-31. Archived from the original on May 6, 2006. Retrieved 2006-06-01. 
  27. ^"King orders dispatch of aid to Indonesian Earthquake Victims". Petra News Agency (Jordan). 2006-05-31. Archived from the original on June 14, 2006. Retrieved 2006-06-01. 
  28. ^"Archived copy". Archived from the original on 2007-08-14. Retrieved 2007-07-20. 
  29. ^"Archived copy". Archived from the original on 2007-01-02. Retrieved 2006-11-01. 

Sources

  • CGI (2006), Preliminary Damage and Loss Assessment – Yogyakarta and Central Java Natural Disaster(PDF), The 15th Meeting of The Consultative Group on Indonesia, Jakarta, June 14, 2006 
  • Elnashai, A. S.; Jig Kim, S.; Jin Yun, G.; Sidarta, D. (2006), The Yogyakarta Earthquake of May 27, 2006(PDF), MAE Center Report No. 07-02, Mid-America Earthquake Center, Newmark Civil Engineering Lab, University of Illinois at Urbana–Champaign 
  • Karnawati, D.; Pramumijoyo, S.; Hussein, S.; Anderson, R.; Ratdomopurbo, A. (2007), "Geological Influence on the Site Response of Bantul Earthquake at Yogyakarta Special Province, Indonesia", American Geophysical Union, Spring Meeting 2007, abstract #S31C-02, 31, Bibcode:2007AGUSM.S31C..02K 

External links[edit]

←Earthquakes in 2006→

January
February
March
April
May
July
August
September
October
November
December

indicates earthquake resulting in at least 30 deaths
indicates the deadliest earthquake of the year

USGS ShakeMap for the mainshock
Unrest at Mount Merapi in June 2006
A fallen pinnacle from the damaged Prambanan temple
Patients being treated at a hospital in Yogyakarta.